Exercise 1.6 | Q 6.1 | Page 16
Using the truth table, verify
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
p | q | r | q∧r | p∨(q∧r) | p∨q | p∨r | (p∨q)∧(p∨r) |
T | T | T | T | T | T | T | T |
T | T | F | F | T | T | T | T |
T | F | T | F | T | T | T | T |
T | F | F | F | T | T | T | T |
F | T | T | T | T | T | T | T |
F | T | F | F | F | T | F | F |
F | F | T | F | F | F | T | F |
F | F | F | F | F | F | F | F |
The entries in columns 5 and 8 are identical.
∴ p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)