Advertisement

Assuming the first statement p and second as q. Write the following statement in symbolic form. The necessary condition for existence of a tangent to the curve of the function is continuity.

QUESTION

Miscellaneous Exercise 1 | Q 4.03 | Page 31

Assuming the first statement p and second as q. Write the following statement in symbolic form.

The necessary condition for existence of a tangent to the curve of the function is continuity.


SOLUTION

The given statement can also be expressed as ‘If the function is continuous, then the tangent to the curve exists’.

Let p : The function is continuous
q : The tangent to the curve exists.

∴ p → q is the symbolic form of the given statement.