Advertisement

Practice Set 1.4 Similarity Class 10th Mathematics Part 2 MHB Solution

Practice Set 1.4
  1. The ratio of corresponding sides of similar triangles is 3 : 5; then find the ratio of…
  2. If ΔABC ~ ΔPQR and AB: PQ = 2:3, then fill in the blanks. a (deltaabc)/a (deltapqr) =…
  3. If ΔABC ~ ΔPQR, A (ΔABC) = 80, A(ΔPQR) = 125, then fill in the blanks. a (deltaabc)/a…
  4. ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A (ΔLMN). If QR = 20 then find MN.…
  5. Areas of two similar triangles are 225 sq.cm 81 sq.cm. If a side of the smaller…
  6. Δ ABC and ΔDEF are equilateral triangles. If A(ΔABC) : A(ΔDEF) = 1 : 2 and AB = 4, find…
  7. In figure 1.66, seg PQ || seg DE, A(Δ PQF) = 20 units, PF = 2 DP, then find A(DPQE) by…
Practice Set 1.4
Question 1.

The ratio of corresponding sides of similar triangles is 3 : 5; then find the ratio of their areas.


Answer:

Theorem: When two triangles are similar, the ratio of areas of those triangles is equal to the ratio of the squares of their corresponding sides.

⇒ Ratio of areas = 32:52


⇒ Ratio of areas = 9 : 25



Question 2.

If ΔABC ~ ΔPQR and AB: PQ = 2:3, then fill in the blanks.



Answer:

∵ Δ ABC~Δ PQR and AB:PQ = 2:3

⇒ 



Question 3.

If ΔABC ~ ΔPQR, A (ΔABC) = 80, A(ΔPQR) = 125, then fill in the blanks.



Answer:

∵ Δ ABC~Δ PQR

⇒  (∵ A(Δ PQR) = 125 is given)


⇒ 


⇒ 


⇒ 



Question 4.

ΔLMN ~ ΔPQR, 9 × A(ΔPQR) = 16 × A (ΔLMN). If QR = 20 then find MN.


Answer:

∵ Δ ABC~Δ PQR

⇒ Given that, 9× A(Δ ABC) = 16× A(Δ PQR)


⇒ 


And,


⇒ 


⇒ 


⇒ MN2 = 


⇒ MN = 15



Question 5.

Areas of two similar triangles are 225 sq.cm & 81 sq.cm. If a side of the smaller triangle is 12 cm, then find corresponding side of the bigger triangle.


Answer:

Let area of one(bigger) triangle be ‘A’, other(smaller) triangle be ‘B’,corresponding side of smaller triangle be ‘a’ and bigger triangle be ‘b’.

⇒  (By theorem)


And a = 12cm, A = 225 sq.cm, B = 81 sq.cm ……(Given)


⇒ 


⇒ b2 = 


⇒ b = √400


⇒ b = 20 cm



Question 6.

Δ ABC and ΔDEF are equilateral triangles. If A(ΔABC) : A(ΔDEF) = 1 : 2 and AB = 4, find DE.


Answer:

We know that, all the angles of an equilateral triangles are equal, i.e., 60°.

⇒ Δ ABC~Δ DEF ……(By AAA Similarity Test)


⇒ 


And, (Given)


⇒ 


⇒ DE2 = 2× 42 (∵ AB = 4)


⇒ DE = √32


DE = 4√2



Question 7.

In figure 1.66, seg PQ || seg DE, A(Δ PQF) = 20 units, PF = 2 DP, then find A(DPQE) by completing the following activity.

A(Δ PQF) = 20 units, PF = 2 DP, Let us assume DP = x. ∴ PF = 2x



In Δ FDE and Δ FPQ,

∠FDE ≅ ∠ .......... corresponding angles

∠FED ≅ ∠ ......... corresponding angles

∴ Δ FDE ~ Δ FPQ .......... AA test





Answer:

A(Δ PQF) = 20units,PF = 2DP,Let us assume DP = x,∴ PF = 2x


⇒ DF = DP + PF = x + 2x = 3x


In Δ FDE & Δ FPQ


∠ FDE ≅ ∠ FPQ (Corresponding angles)


∠ FEP ≅ ∠ FQP (Corresponding angles)


∴ Δ FDE~ Δ FPQ (AA Test)


∴ 


A(Δ FDE) =  A(ΔFPQ) = × 20 = 45


A(□DPQE) = A (Δ FDE) - A(ΔFPQ)


= 45-20


= 25 sq.unit.