Practice Set 1.2 Linear Equations In Two Variables
Class 10th Mathematics Part 1 MHB Solution (49)
Practice Set 1.2
Question 1.
Complete the following table to draw graph of the equations -
(I) \(x+y = 3\)
(II) \(x - y = 4\)
Answer:
(1). For Equation (I): \(x+y = 3\)
\( \quad 3 + y = 3 \)
\( \quad y = 3 - 3 \)
\( \quad y = 0 \)
Point: \((3, 0)\)
\( \quad -2 + y = 3 \)
\( \quad y = 3 + 2 \)
\( \quad y = 5 \)
Point: \((-2, 5)\)
\( \quad 0 + y = 3 \)
\( \quad y = 3 \)
Point: \((0, 3)\)
Table for \(x+y=3\):
| x | y | (x,y) |
|---|---|---|
| 3 | 0 | (3,0) |
| -2 | 5 | (-2,5) |
| 0 | 3 | (0,3) |
Graphical Representation for \(x+y=3\):
(2). For Equation (II): \(x-y = 4\)
\( \quad 4 - y = 4 \)
\( \quad -y = 4 - 4 \)
\( \quad -y = 0 \)
\( \quad y = 0 \)
Point: \((4, 0)\)
\( \quad -1 - y = 4 \)
\( \quad -y = 4 + 1 \)
\( \quad -y = 5 \)
\( \quad y = -5 \)
Point: \((-1, -5)\)
\( \quad 0 - y = 4 \)
\( \quad -y = 4 \)
\( \quad y = -4 \)
Point: \((0, -4)\)
Table for \(x-y=4\):
| x | y | (x,y) |
|---|---|---|
| 4 | 0 | (4,0) |
| -1 | -5 | (-1,-5) |
| 0 | -4 | (0,-4) |
Graphical Representation for \(x-y=4\):
Question 2.
Solve the following simultaneous equation graphically.
(1) \(x + y = 6\); \(x - y = 4\)
Answer:
Equation I: \(x + y = 6\)
| x | y | (x,y) |
|---|---|---|
| 0 | 6 | (0,6) |
| 6 | 0 | (6,0) |
| 5 | 1 | (5,1) |
| 3 | 3 | (3,3) |
Equation II: \(x - y = 4\)
| x | y | (x,y) |
|---|---|---|
| 0 | -4 | (0,-4) |
| 4 | 0 | (4,0) |
| 2 | -2 | (2,-2) |
| 5 | 1 | (5,1) |
Graphical Representation:
Calculating intersecting point (Algebraically):
Given equations are:
\(x + y = 6\) --- (I)
\(x - y = 4\) --- (II)
Adding Equation (I) and Equation (II):
\((x+y) + (x-y) = 6 + 4\)
\(2x = 10\)
\(x = \frac{10}{2}\)
\(x = 5\)
Substituting \(x=5\) into Equation (I):
\(5 + y = 6\)
\(y = 6 - 5\)
\(y = 1\)
Intersection Point: \((5,1)\)
Question 3.
Solve the following simultaneous equation graphically.
\(x + y = 5\); \(x - y = 3\)
Answer:
Equation I: \(x + y = 5\)
| x | y | (x,y) |
|---|---|---|
| 0 | 5 | (0,5) |
| 5 | 0 | (5,0) |
| 2 | 3 | (2,3) |
| 4 | 1 | (4,1) |
Equation II: \(x - y = 3\)
| x | y | (x,y) |
|---|---|---|
| 0 | -3 | (0,-3) |
| 3 | 0 | (3,0) |
| 2 | -1 | (2,-1) |
| 4 | 1 | (4,1) |
Graphical Representation:
Calculating intersecting point (Algebraically):
\(x + y = 5\) --- (I)
\(x - y = 3\) --- (II)
Adding Equation (I) and Equation (II):
\((x+y) + (x-y) = 5 + 3\)
\(2x = 8\)
\(x = 4\)
Substituting \(x=4\) into Equation (I):
\(4 + y = 5\)
\(y = 1\)
Intersection Point: \((4,1)\)
Question 4.
Solve the following simultaneous equation graphically.
\(x + y = 0\); \(2x - y = 9\)
Answer:
Equation I: \(x + y = 0 \Rightarrow y = -x\)
| x | y | (x,y) |
|---|---|---|
| 0 | 0 | (0,0) |
| 1 | -1 | (1,-1) |
| -2 | 2 | (-2,2) |
| 3 | -3 | (3,-3) |
Equation II: \(2x - y = 9 \Rightarrow y = 2x - 9\)
| x | y | (x,y) |
|---|---|---|
| 0 | -9 | (0,-9) |
| 4.5 | 0 | (4.5,0) |
| 4 | -1 | (4,-1) |
| 3 | -3 | (3,-3) |
Graphical Representation:
Calculating intersecting point (Algebraically):
From Equation I, \(y = -x\).
Substitute \(y = -x\) into Equation II: \(2x - (-x) = 9\)
\(2x + x = 9\)
\(3x = 9\)
\(x = 3\)
Substitute \(x=3\) into Equation I: \(3 + y = 0\)
\(y = -3\)
Intersection Point: \((3,-3)\)
Question 5.
Solve the following simultaneous equation graphically.
\(3x - y = 2\); \(2x - y = 3\)
Answer:
Equation I: \(3x - y = 2 \Rightarrow y = 3x - 2\)
| x | y | (x,y) |
|---|---|---|
| 0 | -2 | (0,-2) |
| 1 | 1 | (1,1) |
| -1 | -5 | (-1,-5) |
| 2/3 | 0 | (0.67,0) |
Equation II: \(2x - y = 3 \Rightarrow y = 2x - 3\)
| x | y | (x,y) |
|---|---|---|
| 0 | -3 | (0,-3) |
| 1.5 | 0 | (1.5,0) |
| 1 | -1 | (1,-1) |
| -1 | -5 | (-1,-5) |
Graphical Representation:
Calculating intersecting point (Algebraically):
\(3x - y = 2\) --- (I)
\(2x - y = 3\) --- (II)
Subtracting Equation (II) from Equation (I):
\((3x - y) - (2x - y) = 2 - 3\)
\(3x - y - 2x + y = -1\)
\(x = -1\)
Substituting \(x=-1\) into Equation (I):
\(3(-1) - y = 2\)
\(-3 - y = 2\)
\(-y = 5\)
\(y = -5\)
Intersection Point: \((-1,-5)\)
Question 6.
Solve the following simultaneous equation graphically.
\(3x - 4y = -7\); \(5x - 2y = 0\)
Answer:
Equation I: \(3x - 4y = -7 \Rightarrow y = \frac{3x+7}{4}\)
| x | y | (x,y) |
|---|---|---|
| 1 | 2.5 | (1, 2.5) |
| -1 | 1 | (-1, 1) |
| 0 | 1.75 | (0, 1.75) |
| -7/3 | 0 | (-2.33, 0) |
Equation II: \(5x - 2y = 0 \Rightarrow y = \frac{5}{2}x\)
| x | y | (x,y) |
|---|---|---|
| 0 | 0 | (0,0) |
| 1 | 2.5 | (1, 2.5) |
| 2 | 5 | (2,5) |
| -2 | -5 | (-2,-5) |
Graphical Representation (Plotting both the graphs we get):
Calculating intersecting point (Algebraically):
From Equation II, \(y = \frac{5}{2}x\).
Substitute into Equation I: \(3x - 4\left(\frac{5}{2}x\right) = -7\)
\(3x - 2(5x) = -7\)
\(3x - 10x = -7\)
\(-7x = -7\)
\(x = 1\)
Substitute \(x=1\) into \(y = \frac{5}{2}x\):
\(y = \frac{5}{2}(1)\)
\(y = 2.5\)
Intersection Point: \((1, 2.5)\)