SSC BOARD PAPERS IMPORTANT TOPICS COVERED FOR BOARD EXAM 2024

# Algebra is one of the most basic part ofmathematics, Algebra deals with variables and numbers.

Although Algebra is the basic mathematics , It deals with large numbers of formulas which relates two or more variables and numbers with each other.
Basic Algebraic Formulas:
The algebraic formulas involving basic relation between two and three variables are:
1>
$a^2-b^2 = (a+b)\times (a-b)$
2>
$a^2+b^2 = (a+b)^2-2ab=(a-b)^2+2ab$
3>
$(a+b)^2 = a^2+2ab+b^2 = (a-b)^2+4ab$
4>
$(a-b)^2 = a^2-2ab+b^2 = (a+b)^2-4ab$
5>
$a^3+b^3 = (a+b) \times (a^2-ab+b^2) = (a+b)^3-3ab \times (a+b)$
6>
$a^3-b^3 = (a-b) \times (a^2+ab+b^2) = (a-b)^3+3ab \times (a-b)$
7>
$(a+b)^3 = a^3+3a^2b+3ab^2+b^3 = a^3+b^3+3ab \times (a+b)$
8>
$(a-b)^3 = a^3-3a^2b+3ab^2-b^3 = a^3-b^3-3ab \times (a+b)$
9>
$(x+a) \times (x+b) = x^2+x \times (a+b)+ab$
10>
$(x-a) \times (x+b) = x^2+x \times (b-a)-ab$
11>
$(x-a) \times (x-b) = x^2-x \times (a+b)+ab$
12>
$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac$
13>
$(a+b+c)^3 = a^3+b^3+c^3+3(a+b)(b+c)(c+a)$
14>
$a^4-b^4 = (a-b) \times (a+b) \times (a^2+b^2)$
15>
$a^6-b^6 = (a+b) \times (a^2-ab+b^2) \times (a-b) \times (a^2+ab+b^2)$
16>
$a^6+b^6 = (a^2+b^2) \times (a^4-a^2b^2+b^4)$
17>
$a^4+a^2b^2+b^4 = (a^2-ab+b^2) \times (a^2+ab+b^2)$
18>
$(a-b-c)^2 = a^2+b^2+c^2-2ab+2bc-2ac$
19>
$a^3+b^3+c^3-3abc = (a+b+c) \times (a^2+b^2+c^2-ab-bc-ac)$
Indices Formulas:
The formulas involving relations between variables and their powers or powers and indices are:
1>
$x^m \times x^n = x^{m+n}$
and
$x^m \times x^n \times \ldots \times x^p = x^{m+n+ \ldots +p}$
2>
$x^m \div x^n = x^{m-n}$
and
$x^m \div x^n \div \ldots \div x^p = x^{m-n- \ldots -p}$
3>
$(x^m)^n = x^{m \times n}$
and
$((x^m)^n)^o) = x^{m \times n \times o}$
4>
$x^0 = 1$
5>
$x^{-m} = \dfrac{1}{x^m}$
and
$x^{m} = \dfrac{1}{x^{-m}}$
6>
$x^{\frac{m}{n}} = \sqrt[n]{x^m}$
7>
$\left( \dfrac{x^a}{y^b} \right)^c = \dfrac{x^{ac}}{y^{bc}}$
8>
$\dfrac{x^m}{y^m} = \left( \dfrac{x}{y} \right)^m$
9>
$\sqrt[m]{\dfrac{x^a}{y^b}} = \dfrac{x^{\frac{a}{m}}}{y^{\frac{b}{m}}}$
10>
$x^{\frac{p}{q}} = \sqrt[q]{x^p} = \left(\sqrt[q]{x}\right)^p$
11>
$\sqrt[m]{\dfrac{x}{y}} = \dfrac{\sqrt[m]{x}}{\sqrt[m]{y}}$
12>
$\sqrt{a} \times \sqrt {b} = \sqrt{a \times b}$    provided that a , b and a*b are not negative numbers.
13>
If, $a^x = a^y$ then , x=y. ( Provided That : $0 < a\text{ and }a \ne 1$ )
14>
If, $a^x = b^x$ then , a=b.  ( Provided That : $0 < a , b \text{ and }a , b \ne 1$ )