Part 1: Top 10 Solved Quadratic Equations
Q1. Solve by factorization: \(x^2 + 5x + 6 = 0\)
Step 1: Find two numbers whose sum is 5 and product is 6. The numbers are 2 and 3.
Step 2: \(x^2 + 2x + 3x + 6 = 0\)
Step 3: \(x(x + 2) + 3(x + 2) = 0\)
Step 4: \((x + 2)(x + 3) = 0\)
Step 5: \(x + 2 = 0\) or \(x + 3 = 0\)
Final Answer: \(x = -2, x = -3\)
Q2. Solve by factorization: \(x^2 - 3x - 10 = 0\)
Sum = -3, Product = -10. Numbers are -5 and 2.
\(x^2 - 5x + 2x - 10 = 0\)
\(x(x - 5) + 2(x - 5) = 0\)
\((x - 5)(x + 2) = 0\)
Final Answer: \(x = 5, x = -2\)
Q3. Solve using Formula Method: \(x^2 + 6x + 5 = 0\)
Comparing with \(ax^2 + bx + c = 0\), \(a=1, b=6, c=5\)
Discriminant \((\Delta) = b^2 - 4ac = 6^2 - 4(1)(5) = 36 - 20 = 16\)
Using formula: \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\)
\(x = \frac{-6 \pm \sqrt{16}}{2} = \frac{-6 \pm 4}{2}\)
\(x = \frac{-2}{2} = -1\) or \(x = \frac{-10}{2} = -5\)
Final Answer: \(x = -1, -5\)
Q4. Solve: \(2y^2 + 27y + 13 = 0\)
Sum = 27, Product = \(2 \times 13 = 26\). Numbers: 26, 1.
\(2y^2 + 26y + 1y + 13 = 0\)
\(2y(y + 13) + 1(y + 13) = 0\)
\((y + 13)(2y + 1) = 0\)
Final Answer: \(y = -13, y = -1/2\)
Q5. Find the value of Discriminant for \(x^2 + 7x - 1 = 0\)
\(a = 1, b = 7, c = -1\)
\(\Delta = b^2 - 4ac\)
\(\Delta = (7)^2 - 4(1)(-1) = 49 + 4 = 53\)
Final Answer: \(\Delta = 53\)
Q6. Determine the nature of roots for \(x^2 - 4x + 4 = 0\)
\(\Delta = (-4)^2 - 4(1)(4) = 16 - 16 = 0\)
Since \(\Delta = 0\), the roots are real and equal.
Final Answer: Real and Equal roots.
Q7. Form a quadratic equation whose roots are 3 and 10.
Let \(\alpha = 3, \beta = 10\)
\(\alpha + \beta = 13\), \(\alpha\beta = 30\)
Equation: \(x^2 - (\alpha + \beta)x + \alpha\beta = 0\)
Final Answer: \(x^2 - 13x + 30 = 0\)
Q8. Find \(k\) if \(x = 3\) is a root of \(kx^2 - 10x + 3 = 0\)
Substitute \(x = 3\) in the equation:
\(k(3)^2 - 10(3) + 3 = 0\)
\(9k - 30 + 3 = 0 \implies 9k - 27 = 0\)
\(9k = 27 \implies k = 3\)
Final Answer: \(k = 3\)
Q9. Solve: \(x^2 - 15x + 54 = 0\)
Numbers: -9, -6 (Sum -15, Product 54)
\((x - 9)(x - 6) = 0\)
Final Answer: \(x = 9, 6\)
Q10. Solve by completing the square: \(x^2 + x - 20 = 0\)
\(x^2 + x = 20\)
Add \((\frac{1}{2})^2 = \frac{1}{4}\) to both sides.
\(x^2 + x + \frac{1}{4} = 20 + \frac{1}{4} \implies (x + \frac{1}{2})^2 = \frac{81}{4}\)
\(x + \frac{1}{2} = \pm \frac{9}{2}\)
\(x = \frac{8}{2} = 4\) or \(x = \frac{-10}{2} = -5\)
Final Answer: \(x = 4, -5\)
Part 2: Practice Questions (Q11 - Q100)
Solve the following Quadratic Equations (Factorization/Formula):
- \(x^2 - 4x - 5 = 0\)
- \(x^2 + 8x + 15 = 0\)
- \(x^2 - 7x + 12 = 0\)
- \(2x^2 - 5x + 2 = 0\)
- \(3x^2 - x - 10 = 0\)
- \(x^2 - 11x + 24 = 0\)
- \(x^2 + 2x - 48 = 0\)
- \(5m^2 = 22m + 15\)
- \(2x^2 - 2x + \frac{1}{2} = 0\)
- \(6x - \frac{2}{x} = 1\)
- \(x^2 - 25 = 0\)
- \(3y^2 = 15y\)
- \(x^2 + 4x + 1 = 0\)
- \(m^2 - 5m - 3 = 0\)
- \(x^2 + 5x + 5 = 0\)
- \(y^2 + \frac{1}{3}y = 2\)
- \(5x^2 + 13x + 8 = 0\)
- \(x^2 + 10x + 24 = 0\)
- \(x^2 - x - 72 = 0\)
- \(x^2 - 16x + 63 = 0\)
- \(2x^2 + 9x + 10 = 0\)
- \(x^2 - 2x - 3 = 0\)
- \(x^2 + 6x + 9 = 0\)
- \(x^2 - 10x + 25 = 0\)
- \(x^2 + 14x + 49 = 0\)
- \(4x^2 - 4x + 1 = 0\)
- \(x^2 - 1 = 0\)
- \(2x^2 - 7x + 6 = 0\)
- \(3x^2 + 8x + 5 = 0\)
- \(x^2 - 12x + 32 = 0\)
Find the Discriminant and State Nature of Roots:
- \(x^2 + x + 1 = 0\)
- \(2x^2 - 5x - 3 = 0\)
- \(x^2 - 6x + 9 = 0\)
- \(3x^2 + 2x - 1 = 0\)
- \(x^2 + 4x + 5 = 0\)
- \(2x^2 - 7x + 3 = 0\)
- \(x^2 - 2x + 1 = 0\)
- \(x^2 + 5x + 6 = 0\)
- \(4x^2 - 12x + 9 = 0\)
- \(x^2 - 8x + 15 = 0\)
- \(2x^2 + 5x + 5 = 0\)
- \(x^2 - x - 1 = 0\)
- \(x^2 + 10x + 25 = 0\)
- \(3x^2 + 7x + 2 = 0\)
- \(x^2 + 2x + 3 = 0\)
- \(5x^2 - 4x + 1 = 0\)
- \(x^2 - 4x + 3 = 0\)
- \(2x^2 - 6x + 3 = 0\)
- \(x^2 + 12x + 36 = 0\)
- \(x^2 - 5x + 7 = 0\)
Form Quadratic Equations from Roots:
- Roots: 2, 5
- Roots: -3, -4
- Roots: 0, 4
- Roots: 1/2, 1/2
- Roots: \(\sqrt{2}, -\sqrt{2}\)
- Roots: 7, -7
- Roots: 6, 1
- Roots: -5, 2
- Roots: 8, 3
- Roots: -1, -1
- Roots: 10, -2
- Roots: 0, 0
- Roots: 5, 5
- Roots: -6, 6
- Roots: 4, -3
- Roots: 1, 9
- Roots: -2, -8
- Roots: 3, -3
- Roots: 1/3, 3
- Roots: -10, -10
Advanced and Word-Based Conditions:
- Find \(k\) if roots of \(x^2 + kx + 12 = 0\) are real and equal.
- Find \(k\) if one root of \(x^2 - kx + 18 = 0\) is 6.
- Sum of roots is 10 and product is 21. Find equation.
- One root is \(2 + \sqrt{3}\), find the other root.
- Solve \(x^4 - 5x^2 + 4 = 0\) (Reducible to quadratic).
- Solve \((x-3)(x+4) = 0\).
- Solve \(x^2 = 49\).
- Solve \(5x^2 = 20\).
- Find \(k\) if \(\Delta = 0\) for \(kx(x-2) + 6 = 0\).
- Solve \(x + 1/x = 2.5\).
- Product of two consecutive natural numbers is 20.
- Find \(x\) if \(x^2 - 9x + 20 = 0\).
- Solve \(y^2 + 10y + 21 = 0\).
- Solve \(x^2 - 11x + 30 = 0\).
- Solve \(x^2 - 2x - 8 = 0\).
- Roots are 1 and -1. Form equation.
- Roots are 4 and 0. Form equation.
- Find \(\Delta\) for \(x^2 + 5x + 5 = 0\).
- Solve \(x^2 - 3x = 0\).
- Solve \(2x^2 = 8\).
Answer Key (Q11 - Q100)
11. 5, -1
12. -3, -5
13. 4, 3
14. 2, 0.5
15. 2, -5/3
16. 8, 3
17. 6, -8
18. 5, -3/5
19. 0.5, 0.5
20. 2/3, -1/2
21. 5, -5
22. 0, 5
23. \(-2 \pm \sqrt{3}\)
24. \(\frac{5 \pm \sqrt{37}}{2}\)
25. \(\frac{-5 \pm \sqrt{5}}{2}\)
26. 4/3, -3/2
27. -1, -1.6
28. -4, -6
29. 9, -8
30. 9, 7
31. -2, -2.5
32. 3, -1
33. -3, -3
34. 5, 5
35. -7, -7
36. 0.5, 0.5
37. 1, -1
38. 2, 1.5
39. -1, -5/3
40. 8, 4
41. -3 (Not Real)
42. 49 (Real, Uniq)
43. 0 (Real, Equal)
44. 16 (Real, Uniq)
45. -4 (Not Real)
46. 25 (Real, Uniq)
47. 0 (Real, Equal)
48. 1 (Real, Uniq)
49. 0 (Real, Equal)
50. 4 (Real, Uniq)
51. -15 (Not Real)
52. 5 (Real, Uniq)
53. 0 (Real, Equal)
54. 25 (Real, Uniq)
55. -8 (Not Real)
56. -4 (Not Real)
57. 4 (Real, Uniq)
58. 12 (Real, Uniq)
59. 0 (Real, Equal)
60. -3 (Not Real)
61. \(x^2-7x+10=0\)
62. \(x^2+7x+12=0\)
63. \(x^2-4x=0\)
64. \(4x^2-4x+1=0\)
65. \(x^2-2=0\)
66. \(x^2-49=0\)
67. \(x^2-7x+6=0\)
68. \(x^2+3x-10=0\)
69. \(x^2-11x+24=0\)
70. \(x^2+2x+1=0\)
71. \(x^2-8x-20=0\)
72. \(x^2=0\)
73. \(x^2-10x+25=0\)
74. \(x^2-36=0\)
75. \(x^2-x-12=0\)
76. \(x^2-10x+9=0\)
77. \(x^2+10x+16=0\)
78. \(x^2-9=0\)
79. \(3x^2-10x+3=0\)
80. \(x^2+20x+100=0\)
81. \(k = \pm \sqrt{48}\)
82. \(k = 9\)
83. \(x^2-10x+21=0\)
84. \(2-\sqrt{3}\)
85. \(\pm 1, \pm 2\)
86. 3, -4
87. 7, -7
88. 2, -2
89. \(k = 6\)
90. 2, 0.5
91. 4, 5
92. 4, 5
93. -3, -7
94. 6, 5
95. 4, -2
96. \(x^2-1=0\)
97. \(x^2-4x=0\)
98. 5
99. 0, 3
100. 2, -2