- (A) 1
- (B) 2
- (C) 3
- (D) 4
(B) 2
Note: The determinant is of order \(2 \times 2\).
- (A) \( \frac{5}{x} - 3 = x^2 \)
- (B) \( x(x+5) = 2 \)
- (C) \( n - 1 = 2n \)
- (D) \( \frac{1}{x^2}(x+2) = x \)
(B) \( x(x+5) = 2 \)
Explanation: \( x(x+5) = 2 \Rightarrow x^2 + 5x - 2 = 0 \). This is in the form \(ax^2+bx+c=0\) with \(a \neq 0\).
- (A) 1
- (B) 8
- (C) 4
- (D) 0
(D) 0
Explanation: \( d = t_{2} - t_{1} = 4 - 4 = 0 \).
- (A) \( \frac{2}{3} \)
- (B) \( \frac{15}{10} \)
- (C) 15%
- (D) 0.7
(B) \( \frac{15}{10} \)
Explanation: Probability cannot be greater than 1. \( \frac{15}{10} = 1.5 > 1 \).
| x | -2 | 2 |
|---|---|---|
| y | 3 | 1 |
| (x, y) | (-2, 3) | (2, 1) |
When \( x = -2 \): \( -2 + 2y = 4 \Rightarrow 2y = 6 \Rightarrow y = 3 \).
When \( y = 1 \): \( x + 2(1) = 4 \Rightarrow x + 2 = 4 \Rightarrow x = 2 \).
Activity:
I am a quadratic equation.
My standard form is \( ax^2 + bx + c = 0 \).
My roots are 5 and 12.
Sum of my roots \( 5 + 12 = 17 \).
Product of my roots \( 5 \times 12 = 60 \).
My quadratic equation is \( x^2 - 17x + 60 = 0 \).
FV = ₹ 20
Premium = ₹ 4
MV = FV + Premium
= 20 + 4
= ₹ 24
Number of shares = \( \frac{\text{Total investment}}{\text{MV}} \)
= \( \frac{24,000}{\fbox{24}} \)
= 1000 shares.
| Class (Time in hours) | Class Mark (\(x_i\)) | No. of Students (\(f_i\)) | \(f_i x_i\) |
|---|---|---|---|
| 0-2 | 1 | 8 | 8 |
| 2-4 | 3 | 14 | 42 |
| 4-6 | 5 | 18 | 90 |
| 6-8 | 7 | 10 | 70 |
| 8-10 | 9 | 10 | 90 |
| Total | \(\sum f_i = 60\) | \(\sum f_i x_i = 300\) |
Activity:
(a) Sum invested = M.V. × No. of shares
= 120 × 300
= ₹ 36,000
(b) Dividend per share = F.V. × rate of dividend
= 100 × \( \frac{7}{100} \)
= ₹ 7
Total dividend received = 300 × 7 = ₹ 2,100
(c) Rate of return = \( \frac{\text{Dividend income}}{\text{Sum invested}} \times 100 \)
= \( \frac{2,100}{36,000} \times 100 \)
= 5.83 %.
Activity:
Let S be the sample space.
\( S = \{23, 25, 32, \fbox{35}, 52, 53\} \)
\( n(S) = \fbox{6} \)
Event A: The number so formed is an odd number.
\( A = \{23, 25, \fbox{35}, 53\} \)
\( n(A) = 4 \)
\( P(A) = \fbox{\( \frac{n(A)}{n(S)} \)} \) ... (Formula)
\( P(A) = \frac{\fbox{4}}{6} \)
\( P(A) = \frac{\fbox{2}}{3} \)
Event A: At least one girl. \( A = \{ B_1G_1, B_1G_2, B_2G_1, B_2G_2, B_3G_1, B_3G_2, G_1G_2 \} \). \( n(A) = 7 \). \( P(A) = \frac{7}{10} \).
Event B: One boy and one girl. \( B = \{ B_1G_1, B_1G_2, B_2G_1, B_2G_2, B_3G_1, B_3G_2 \} \). \( n(B) = 6 \). \( P(B) = \frac{6}{10} = \frac{3}{5} \).
| Class | Frequency (f) | Cumulative Freq (cf) |
|---|---|---|
| 0 - 20 | 140 | 140 |
| 20 - 40 | 100 | 240 |
| 40 - 60 | 80 | 320 |
| 60 - 80 | 60 | 380 |
| 80 - 100 | 20 | 400 |
- 0-10: 25
- 10-20: 20
- 20-30: 30
- 30-40: 40
- 40-50: 65
(Draw a histogram with Class Intervals on X-axis and Number of Students on Y-axis using the data above.)
Equations:
1. \( 2x - y = 2 \) (Intercepts: \( (1,0), (0,-2) \))
2. \( 4x + 3y = 24 \) (Intercepts: \( (6,0), (0,8) \))
Intersection Point:
Solving the system, we get \( x = 3, y = 4 \). Vertex \( C(3,4) \).
Vertices of Triangle on X-axis:
Line 1 crosses X-axis at \( y=0 \Rightarrow 2x=2 \Rightarrow x=1 \). Point \( A(1,0) \).
Line 2 crosses X-axis at \( y=0 \Rightarrow 4x=24 \Rightarrow x=6 \). Point \( B(6,0) \).
Area Calculation:
Base \( AB = 6 - 1 = 5 \) units.
Height \( h = y\)-coordinate of intersection \( = 4 \) units.
$$ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 5 \times 4 = 10 \text{ sq. units}. $$
- Group A: \( 0.20 \times 360 = 72^\circ \)
- Group B: \( 0.30 \times 360 = 108^\circ \)
- Group AB: \( 0.05 \times 360 = 18^\circ \)
- Group O: \( 0.45 \times 360 = 162^\circ \)