10 Quadratic Equations Questions with Solution
Solutions
Solve the quadratic equation $x^2 - 5x + 6 = 0$ by factorization method.
Given equation: $x^2 - 5x + 6 = 0$
To factorize, we look for two numbers whose sum is $-5$ and product is $6$. These numbers are $-2$ and $-3$.
$x^2 - 2x - 3x + 6 = 0$
$x(x - 2) - 3(x - 2) = 0$
$(x - 2)(x - 3) = 0$
Therefore, $x - 2 = 0$ or $x - 3 = 0$
$x = 2$ or $x = 3$
Solve the following equation using the Quadratic Formula: $2x^2 + 7x + 5 = 0$.
Comparing $2x^2 + 7x + 5 = 0$ with $ax^2 + bx + c = 0$, we get:
$a = 2, b = 7, c = 5$
Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$x = \frac{-7 \pm \sqrt{7^2 - 4(2)(5)}}{2(2)}$
$x = \frac{-7 \pm \sqrt{49 - 40}}{4}$
$x = \frac{-7 \pm \sqrt{9}}{4} = \frac{-7 \pm 3}{4}$
Case 1: $x = \frac{-7 + 3}{4} = \frac{-4}{4} = -1$
Case 2: $x = \frac{-7 - 3}{4} = \frac{-10}{4} = -2.5$
Roots: $x = -1, -2.5$
Determine the nature of the roots of the quadratic equation: $3x^2 - 4x + 1 = 0$.
Here, $a = 3, b = -4, c = 1$
Discriminant ($D$) $= b^2 - 4ac$
$D = (-4)^2 - 4(3)(1)$
$D = 16 - 12 = 4$
Since $D > 0$ and $D$ is a perfect square, the roots are real, rational, and unequal.
Solve $x^2 + 6x + 9 = 0$.
Given: $x^2 + 6x + 9 = 0$
This is in the form of $(a + b)^2 = a^2 + 2ab + b^2$.
$(x)^2 + 2(x)(3) + (3)^2 = 0$
$(x + 3)^2 = 0$
$x + 3 = 0$
$x = -3, -3$ (Equal roots)
Find the value of $k$ if one root of the quadratic equation $kx^2 - 14x + 8 = 0$ is $2$.
Since $x = 2$ is a root, it must satisfy the equation.
$k(2)^2 - 14(2) + 8 = 0$
$4k - 28 + 8 = 0$
$4k - 20 = 0$
$4k = 20$
$k = 5$
The sum of two numbers is 15 and the sum of their reciprocals is $3/10$. Find the numbers.
Let the numbers be $x$ and $15 - x$.
According to the condition: $\frac{1}{x} + \frac{1}{15 - x} = \frac{3}{10}$
$\frac{15 - x + x}{x(15 - x)} = \frac{3}{10}$
$\frac{15}{15x - x^2} = \frac{3}{10}$
$150 = 3(15x - x^2)$
$50 = 15x - x^2$ (dividing by 3)
$x^2 - 15x + 50 = 0$
$(x - 10)(x - 5) = 0$
The numbers are 10 and 5.
Solve: $x^2 - 2x - 15 = 0$
$x^2 - 5x + 3x - 15 = 0$
$x(x - 5) + 3(x - 5) = 0$
$(x - 5)(x + 3) = 0$
$x = 5$ or $x = -3$
Form a quadratic equation whose roots are $4$ and $-3$.
Sum of roots ($\alpha + \beta$) $= 4 + (-3) = 1$
Product of roots ($\alpha\beta$) $= 4 \times (-3) = -12$
Equation: $x^2 - (\text{Sum})x + (\text{Product}) = 0$
$x^2 - (1)x + (-12) = 0$
$x^2 - x - 12 = 0$
Solve $4x^2 - 20x + 25 = 0$ using factorization.
$4x^2 - 10x - 10x + 25 = 0$
$2x(2x - 5) - 5(2x - 5) = 0$
$(2x - 5)(2x - 5) = 0$
$2x - 5 = 0 \Rightarrow 2x = 5$
$x = 5/2$
Solve: $x + \frac{1}{x} = 2.5$
Multiply the whole equation by $x$:
$x^2 + 1 = 2.5x$
$x^2 - 2.5x + 1 = 0$
Multiply by 2 to remove decimals: $2x^2 - 5x + 2 = 0$
$2x^2 - 4x - x + 2 = 0$
$2x(x - 2) - 1(x - 2) = 0$
$(x - 2)(2x - 1) = 0$
$x = 2$ or $x = 1/2$