OMTEX AD 2

Integrals Class 12 Exercise 7.8 Solutions - Limit of Sums

For all your study Materials Visit : omtexclasses.com

Integrals Class 12 Solutions: Exercise 7.8

Topic: Definite Integrals as a Limit of a Sum

Question 1: Evaluate \(\displaystyle \int_a^b x \, dx\) using limit of sums.

Solution:

We know that \(\displaystyle \int_a^b f(x) \, dx = \lim_{h \to 0} h \sum_{r=0}^{n-1} f(a+rh)\), where \(h = \frac{b-a}{n}\).

Here, \(f(x) = x\), \(a = a\), \(b = b\), and \(h = \frac{b-a}{n}\).
\(f(a+rh) = a + rh\)

Substituting into the formula:

$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} (a + rh) \\ &= \lim_{n \to \infty} h \left[ \sum_{r=0}^{n-1} a + h \sum_{r=0}^{n-1} r \right] \\ &= \lim_{n \to \infty} h \left[ na + h \frac{(n-1)n}{2} \right] \end{aligned} $$
Since \(nh = b-a\), we substitute \(h = \frac{b-a}{n}\):
$$ \begin{aligned} I &= \lim_{n \to \infty} \left[ (nh)a + \frac{(nh)(nh - h)}{2} \right] \\ &= (b-a)a + \frac{(b-a)(b-a - 0)}{2} \quad (\text{as } h \to 0) \\ &= ab - a^2 + \frac{(b-a)^2}{2} \\ &= \frac{2ab - 2a^2 + b^2 + a^2 - 2ab}{2} \end{aligned} $$
Answer: \(\displaystyle \frac{b^2 - a^2}{2}\)
Question 2: Evaluate \(\displaystyle \int_0^5 (x+1) \, dx\) using limit of sums.

Solution:

Let \(I = \int_0^5 (x+1) \, dx\). Here \(a=0, b=5\), so \(h = \frac{5-0}{n} = \frac{5}{n}\) or \(nh=5\).

\(f(x) = x+1\)
\(f(a+rh) = f(0+rh) = f(rh) = rh + 1\)

Using the limit of sum formula:

$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} (rh + 1) \\ &= \lim_{n \to \infty} h \left[ h \sum_{r=0}^{n-1} r + \sum_{r=0}^{n-1} 1 \right] \\ &= \lim_{n \to \infty} h \left[ h \frac{n(n-1)}{2} + n \right] \end{aligned} $$

Substitute \(h = 5/n\):

$$ \begin{aligned} I &= \lim_{n \to \infty} \frac{5}{n} \left[ \frac{5}{n} \frac{n(n-1)}{2} + n \right] \\ &= \lim_{n \to \infty} \left[ \frac{25}{2} \left(1 - \frac{1}{n}\right) + 5 \right] \\ &= \frac{25}{2}(1 - 0) + 5 \\ &= \frac{25}{2} + \frac{10}{2} \end{aligned} $$
Answer: \(\displaystyle \frac{35}{2}\)
Question 3: Evaluate \(\displaystyle \int_2^3 x^2 \, dx\) using limit of sums.

Solution:

Here \(a=2, b=3\), so \(h = \frac{3-2}{n} = \frac{1}{n}\) and \(nh=1\).

\(f(x) = x^2\)
\(f(a+rh) = f(2+rh) = (2+rh)^2 = 4 + 4rh + r^2h^2\)
$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} (4 + 4rh + r^2h^2) \\ &= \lim_{n \to \infty} h \left[ 4n + 4h \frac{n(n-1)}{2} + h^2 \frac{n(n-1)(2n-1)}{6} \right] \end{aligned} $$

Multiply \(h\) inside and substitute \(nh=1\):

$$ \begin{aligned} I &= \lim_{n \to \infty} \left[ 4nh + 2(nh)(nh-h) + \frac{(nh)(nh-h)(2nh-h)}{6} \right] \\ &= \lim_{n \to \infty} \left[ 4(1) + 2(1)(1-h) + \frac{1(1-h)(2-h)}{6} \right] \end{aligned} $$

As \(n \to \infty, h \to 0\):

$$ \begin{aligned} I &= 4 + 2(1) + \frac{1(1)(2)}{6} \\ &= 4 + 2 + \frac{1}{3} = 6 + \frac{1}{3} \end{aligned} $$
Answer: \(\displaystyle \frac{19}{3}\)
Question 4: Evaluate \(\displaystyle \int_1^4 (x^2 - x) \, dx\) using limit of sums.

Solution:

Here \(a=1, b=4\), so \(h = \frac{3}{n}\), \(nh=3\).

\(f(x) = x^2 - x\)
\(f(1+rh) = (1+rh)^2 - (1+rh) = 1 + 2rh + r^2h^2 - 1 - rh = rh + r^2h^2\)
$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} (rh + r^2h^2) \\ &= \lim_{n \to \infty} h \left[ h \frac{n(n-1)}{2} + h^2 \frac{n(n-1)(2n-1)}{6} \right] \\ &= \lim_{n \to \infty} \left[ \frac{(nh)(nh-h)}{2} + \frac{(nh)(nh-h)(2nh-h)}{6} \right] \end{aligned} $$

Substitute \(nh=3\) and let \(h \to 0\):

$$ \begin{aligned} I &= \frac{3(3-0)}{2} + \frac{3(3-0)(6-0)}{6} \\ &= \frac{9}{2} + \frac{54}{6} \\ &= 4.5 + 9 \end{aligned} $$
Answer: \(\displaystyle \frac{27}{2}\)
Question 5: Evaluate \(\displaystyle \int_{-1}^1 e^x \, dx\) using limit of sums.

Solution:

Here \(a=-1, b=1\), so \(h = \frac{2}{n}\), \(nh=2\).

\(f(x) = e^x\)
\(f(a+rh) = e^{-1+rh} = e^{-1} \cdot e^{rh}\)

This forms a Geometric Progression (G.P.).

$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} e^{-1} \cdot e^{rh} \\ &= \lim_{n \to \infty} h e^{-1} \left( 1 + e^h + e^{2h} + \dots + e^{(n-1)h} \right) \end{aligned} $$

Using sum of G.P. formula \(S_n = \frac{a(R^n-1)}{R-1}\) where \(R=e^h\):

$$ \begin{aligned} I &= \lim_{h \to 0} h e^{-1} \frac{1 \cdot (e^{nh} - 1)}{e^h - 1} \\ &= e^{-1}(e^2 - 1) \lim_{h \to 0} \frac{h}{e^h - 1} \end{aligned} $$

Since \(\lim_{h \to 0} \frac{h}{e^h - 1} = 1\):

$$ I = e^{-1}(e^2 - 1) = e - e^{-1} $$
Answer: \(\displaystyle e - \frac{1}{e}\)
Question 6: Evaluate \(\displaystyle \int_0^4 (x + e^{2x}) \, dx\) using limit of sums.

Solution:

We can split this into two integrals: \(I = I_1 + I_2\), where \(I_1 = \int_0^4 x \, dx\) and \(I_2 = \int_0^4 e^{2x} \, dx\).

Part 1: \(I_1 = \int_0^4 x \, dx\)
Similar to Question 1 with \(a=0, b=4\). The result is \(\frac{4^2 - 0^2}{2} = 8\).
Part 2: \(I_2 = \int_0^4 e^{2x} \, dx\)
\(a=0, b=4, h=4/n\). \(f(rh) = e^{2rh}\).
$$ \begin{aligned} I_2 &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} e^{2rh} \\ &= \lim_{h \to 0} h \left( 1 + e^{2h} + e^{4h} + \dots + e^{2(n-1)h} \right) \end{aligned} $$

This is a G.P. with common ratio \(R = e^{2h}\):

$$ \begin{aligned} I_2 &= \lim_{h \to 0} h \frac{(e^{2h})^n - 1}{e^{2h} - 1} \\ &= \lim_{h \to 0} h \frac{e^{2nh} - 1}{e^{2h} - 1} \end{aligned} $$

Substitute \(nh = 4\):

$$ \begin{aligned} I_2 &= (e^8 - 1) \lim_{h \to 0} \frac{h}{e^{2h} - 1} \\ &= (e^8 - 1) \lim_{h \to 0} \frac{1}{2} \cdot \frac{2h}{e^{2h} - 1} \\ &= (e^8 - 1) \cdot \frac{1}{2} \cdot 1 \end{aligned} $$
Combining both parts:
\(I = I_1 + I_2 = 8 + \frac{e^8 - 1}{2} = \frac{16 + e^8 - 1}{2}\)
Answer: \(\displaystyle \frac{15 + e^8}{2}\)