- Ex. 7.1
- Ex. 7.2
- Ex. 7.2
- Ex. 7.3
- Ex. 7.4
- Ex. 7.5
- Ex. 7.6
- Ex. 7.7
- Ex. 7.8
- Ex. 7.9
- Ex. 7.10
- Ex. 7.11
- Miscellaneous Exercise
Integrals Class 12 Solutions: Exercise 7.8
Topic: Definite Integrals as a Limit of a Sum
Solution:
We know that \(\displaystyle \int_a^b f(x) \, dx = \lim_{h \to 0} h \sum_{r=0}^{n-1} f(a+rh)\), where \(h = \frac{b-a}{n}\).
\(f(a+rh) = a + rh\)
Substituting into the formula:
$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} (a + rh) \\ &= \lim_{n \to \infty} h \left[ \sum_{r=0}^{n-1} a + h \sum_{r=0}^{n-1} r \right] \\ &= \lim_{n \to \infty} h \left[ na + h \frac{(n-1)n}{2} \right] \end{aligned} $$Solution:
Let \(I = \int_0^5 (x+1) \, dx\). Here \(a=0, b=5\), so \(h = \frac{5-0}{n} = \frac{5}{n}\) or \(nh=5\).
\(f(a+rh) = f(0+rh) = f(rh) = rh + 1\)
Using the limit of sum formula:
$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} (rh + 1) \\ &= \lim_{n \to \infty} h \left[ h \sum_{r=0}^{n-1} r + \sum_{r=0}^{n-1} 1 \right] \\ &= \lim_{n \to \infty} h \left[ h \frac{n(n-1)}{2} + n \right] \end{aligned} $$Substitute \(h = 5/n\):
$$ \begin{aligned} I &= \lim_{n \to \infty} \frac{5}{n} \left[ \frac{5}{n} \frac{n(n-1)}{2} + n \right] \\ &= \lim_{n \to \infty} \left[ \frac{25}{2} \left(1 - \frac{1}{n}\right) + 5 \right] \\ &= \frac{25}{2}(1 - 0) + 5 \\ &= \frac{25}{2} + \frac{10}{2} \end{aligned} $$Solution:
Here \(a=2, b=3\), so \(h = \frac{3-2}{n} = \frac{1}{n}\) and \(nh=1\).
\(f(a+rh) = f(2+rh) = (2+rh)^2 = 4 + 4rh + r^2h^2\)
Multiply \(h\) inside and substitute \(nh=1\):
$$ \begin{aligned} I &= \lim_{n \to \infty} \left[ 4nh + 2(nh)(nh-h) + \frac{(nh)(nh-h)(2nh-h)}{6} \right] \\ &= \lim_{n \to \infty} \left[ 4(1) + 2(1)(1-h) + \frac{1(1-h)(2-h)}{6} \right] \end{aligned} $$As \(n \to \infty, h \to 0\):
$$ \begin{aligned} I &= 4 + 2(1) + \frac{1(1)(2)}{6} \\ &= 4 + 2 + \frac{1}{3} = 6 + \frac{1}{3} \end{aligned} $$Solution:
Here \(a=1, b=4\), so \(h = \frac{3}{n}\), \(nh=3\).
\(f(1+rh) = (1+rh)^2 - (1+rh) = 1 + 2rh + r^2h^2 - 1 - rh = rh + r^2h^2\)
Substitute \(nh=3\) and let \(h \to 0\):
$$ \begin{aligned} I &= \frac{3(3-0)}{2} + \frac{3(3-0)(6-0)}{6} \\ &= \frac{9}{2} + \frac{54}{6} \\ &= 4.5 + 9 \end{aligned} $$Solution:
Here \(a=-1, b=1\), so \(h = \frac{2}{n}\), \(nh=2\).
\(f(a+rh) = e^{-1+rh} = e^{-1} \cdot e^{rh}\)
This forms a Geometric Progression (G.P.).
$$ \begin{aligned} I &= \lim_{n \to \infty} h \sum_{r=0}^{n-1} e^{-1} \cdot e^{rh} \\ &= \lim_{n \to \infty} h e^{-1} \left( 1 + e^h + e^{2h} + \dots + e^{(n-1)h} \right) \end{aligned} $$Using sum of G.P. formula \(S_n = \frac{a(R^n-1)}{R-1}\) where \(R=e^h\):
$$ \begin{aligned} I &= \lim_{h \to 0} h e^{-1} \frac{1 \cdot (e^{nh} - 1)}{e^h - 1} \\ &= e^{-1}(e^2 - 1) \lim_{h \to 0} \frac{h}{e^h - 1} \end{aligned} $$Since \(\lim_{h \to 0} \frac{h}{e^h - 1} = 1\):
$$ I = e^{-1}(e^2 - 1) = e - e^{-1} $$Solution:
We can split this into two integrals: \(I = I_1 + I_2\), where \(I_1 = \int_0^4 x \, dx\) and \(I_2 = \int_0^4 e^{2x} \, dx\).
Similar to Question 1 with \(a=0, b=4\). The result is \(\frac{4^2 - 0^2}{2} = 8\).
\(a=0, b=4, h=4/n\). \(f(rh) = e^{2rh}\).
This is a G.P. with common ratio \(R = e^{2h}\):
$$ \begin{aligned} I_2 &= \lim_{h \to 0} h \frac{(e^{2h})^n - 1}{e^{2h} - 1} \\ &= \lim_{h \to 0} h \frac{e^{2nh} - 1}{e^{2h} - 1} \end{aligned} $$Substitute \(nh = 4\):
$$ \begin{aligned} I_2 &= (e^8 - 1) \lim_{h \to 0} \frac{h}{e^{2h} - 1} \\ &= (e^8 - 1) \lim_{h \to 0} \frac{1}{2} \cdot \frac{2h}{e^{2h} - 1} \\ &= (e^8 - 1) \cdot \frac{1}{2} \cdot 1 \end{aligned} $$\(I = I_1 + I_2 = 8 + \frac{e^8 - 1}{2} = \frac{16 + e^8 - 1}{2}\)