OMTEX AD 2

Class 12 Maths Chapter 7 Integrals Exercise 7.5 NCERT Solutions

For all your study Materials Visit : omtexclasses.com

Exercise 7.5: Integration by Partial Fractions

Question 1
Integrate the rational function: \(\frac{x}{(x+1)(x+2)}\)

Solution:

Let \(\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}\)

\(\Rightarrow x = A(x+2) + B(x+1) \quad \dots(1)\)

Putting \(x = -1\) in (1):
\(-1 = A(1) \Rightarrow A = -1\)

Putting \(x = -2\) in (1):
\(-2 = B(-1) \Rightarrow B = 2\)

Therefore,
\(\int \frac{x}{(x+1)(x+2)} dx = \int \left( \frac{-1}{x+1} + \frac{2}{x+2} \right) dx\)
\(= -\log|x+1| + 2\log|x+2| + C\)
\(= \log(x+2)^2 - \log|x+1| + C\)

Question 2
Integrate the rational function: \(\frac{1}{x^2 - 9}\)

Solution:

The expression can be factored as \(\frac{1}{(x-3)(x+3)}\).

Let \(\frac{1}{(x-3)(x+3)} = \frac{A}{x-3} + \frac{B}{x+3}\)

\(\Rightarrow 1 = A(x+3) + B(x-3) \quad \dots(1)\)

Putting \(x = 3\) in (1):
\(1 = 6A \Rightarrow A = \frac{1}{6}\)

Putting \(x = -3\) in (1):
\(1 = -6B \Rightarrow B = -\frac{1}{6}\)

Therefore,
\(\int \frac{dx}{x^2 - 9} = \frac{1}{6} \int \frac{dx}{x-3} - \frac{1}{6} \int \frac{dx}{x+3}\)
\(= \frac{1}{6} \log|x-3| - \frac{1}{6} \log|x+3| + C\)
\(= \frac{1}{6} \log \left| \frac{x-3}{x+3} \right| + C\)

Question 3
Integrate the rational function: \(\frac{3x-1}{(x-1)(x-2)(x-3)}\)

Solution:

Let \(\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}\)

\(\Rightarrow 3x-1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)\)

Putting \(x=1\): \(2 = A(-1)(-2) \Rightarrow 2A = 2 \Rightarrow A = 1\)

Putting \(x=2\): \(5 = B(1)(-1) \Rightarrow -B = 5 \Rightarrow B = -5\)

Putting \(x=3\): \(8 = C(2)(1) \Rightarrow 2C = 8 \Rightarrow C = 4\)

Thus,
\(\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \frac{1}{x-1} dx - 5 \int \frac{1}{x-2} dx + 4 \int \frac{1}{x-3} dx\)
\(= \log|x-1| - 5\log|x-2| + 4\log|x-3| + C\)

Question 4
Integrate the rational function: \(\frac{x}{(x-1)(x-2)(x-3)}\)

Solution:

Let \(\frac{x}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}\)

\(\Rightarrow x = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)\)

Putting \(x=1\): \(1 = 2A \Rightarrow A = \frac{1}{2}\)

Putting \(x=2\): \(2 = -B \Rightarrow B = -2\)

Putting \(x=3\): \(3 = 2C \Rightarrow C = \frac{3}{2}\)

Therefore,
\(\int \frac{x}{(x-1)(x-2)(x-3)} dx = \frac{1}{2}\log|x-1| - 2\log|x-2| + \frac{3}{2}\log|x-3| + C\)

Question 5
Integrate the rational function: \(\frac{2x}{x^2+3x+2}\)

Solution:

Denominator \(x^2+3x+2 = (x+1)(x+2)\).

Let \(\frac{2x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}\)

\(\Rightarrow 2x = A(x+2) + B(x+1)\)

Putting \(x=-1\): \(-2 = A \Rightarrow A = -2\)

Putting \(x=-2\): \(-4 = -B \Rightarrow B = 4\)

Thus,
\(\int \frac{2x}{x^2+3x+2} dx = -2\log|x+1| + 4\log|x+2| + C\)

Question 6
Integrate the rational function: \(\frac{1-x^2}{x(1-2x)}\)

Solution:

The integrand is \(\frac{1-x^2}{x-2x^2}\). Since the degree of the numerator equals the degree of the denominator, we divide first.

\(\frac{1-x^2}{-2x^2+x} = \frac{1}{2} + \frac{1 - \frac{x}{2}}{x(1-2x)} = \frac{1}{2} + \frac{2-x}{2x(1-2x)}\)

Let \(\frac{2-x}{x(1-2x)} = \frac{A}{x} + \frac{B}{1-2x}\)

\(\Rightarrow 2-x = A(1-2x) + Bx\)

Putting \(x=0\): \(A=2\)

Putting \(x=\frac{1}{2}\): \(\frac{3}{2} = \frac{B}{2} \Rightarrow B=3\)

Thus, Integrand = \(\frac{1}{2} + \frac{1}{2} \left( \frac{2}{x} + \frac{3}{1-2x} \right)\)

\(\int \left( \frac{1}{2} + \frac{1}{x} + \frac{3}{2(1-2x)} \right) dx\)
\(= \frac{x}{2} + \log|x| + \frac{3}{2} \cdot \frac{\log|1-2x|}{-2} + C\)
\(= \frac{x}{2} + \log|x| - \frac{3}{4}\log|1-2x| + C\)

Question 7
Integrate the rational function: \(\frac{x}{(x^2+1)(x-1)}\)

Solution:

Let \(\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}\)

\(\Rightarrow x = (Ax+B)(x-1) + C(x^2+1)\)

Putting \(x=1\): \(1 = 2C \Rightarrow C = \frac{1}{2}\)

Comparing coefficients of \(x^2\): \(A+C=0 \Rightarrow A = -\frac{1}{2}\)

Comparing constant terms: \(-B+C=0 \Rightarrow B = \frac{1}{2}\)

Integral = \(\int \left( \frac{-\frac{1}{2}x + \frac{1}{2}}{x^2+1} + \frac{\frac{1}{2}}{x-1} \right) dx\)

\(= -\frac{1}{2}\int \frac{x}{x^2+1} dx + \frac{1}{2}\int \frac{1}{x^2+1} dx + \frac{1}{2}\int \frac{1}{x-1} dx\)

\(= -\frac{1}{4}\log(x^2+1) + \frac{1}{2}\tan^{-1}x + \frac{1}{2}\log|x-1| + C\)

Question 8
Integrate the rational function: \(\frac{x}{(x-1)^2(x+2)}\)

Solution:

Let \(\frac{x}{(x-1)^2(x+2)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2}\)

\(\Rightarrow x = A(x-1)(x+2) + B(x+2) + C(x-1)^2\)

Putting \(x=1\): \(1 = 3B \Rightarrow B = \frac{1}{3}\)

Putting \(x=-2\): \(-2 = 9C \Rightarrow C = -\frac{2}{9}\)

Comparing coeff of \(x^2\): \(A+C=0 \Rightarrow A = \frac{2}{9}\)

Integral = \(\frac{2}{9}\log|x-1| + \frac{1}{3} \int (x-1)^{-2} dx - \frac{2}{9}\log|x+2| + C\)

\(= \frac{2}{9}\log \left| \frac{x-1}{x+2} \right| - \frac{1}{3(x-1)} + C\)

Question 9
Integrate the rational function: \(\frac{3x+5}{x^3-x^2-x+1}\)

Solution:

\(x^3-x^2-x+1 = x^2(x-1) - 1(x-1) = (x^2-1)(x-1) = (x+1)(x-1)^2\)

Let \(\frac{3x+5}{(x+1)(x-1)^2} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\)

\(\Rightarrow 3x+5 = A(x-1)^2 + B(x+1)(x-1) + C(x+1)\)

Putting \(x=1\): \(8 = 2C \Rightarrow C=4\)

Putting \(x=-1\): \(2 = 4A \Rightarrow A=\frac{1}{2}\)

Coeff of \(x^2\): \(A+B=0 \Rightarrow B=-\frac{1}{2}\)

Integral = \(\frac{1}{2}\log|x+1| - \frac{1}{2}\log|x-1| - \frac{4}{x-1} + C\)

\(= \frac{1}{2} \log \left| \frac{x+1}{x-1} \right| - \frac{4}{x-1} + C\)

Question 10
Integrate the rational function: \(\frac{2x-3}{(x^2-1)(2x+3)}\)

Solution:

Factor: \((x-1)(x+1)(2x+3)\)

Let \(\frac{2x-3}{(x-1)(x+1)(2x+3)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{2x+3}\)

\(x=1 \Rightarrow -1 = A(2)(5) \Rightarrow A = -\frac{1}{10}\)

\(x=-1 \Rightarrow -5 = B(-2)(1) \Rightarrow B = \frac{5}{2}\)

\(x=-\frac{3}{2} \Rightarrow -6 = C(-\frac{5}{2})(-\frac{1}{2}) \Rightarrow C = -\frac{24}{5}\)

Integral = \(-\frac{1}{10}\log|x-1| + \frac{5}{2}\log|x+1| - \frac{24}{5} \frac{\log|2x+3|}{2} + C\)

\(= \frac{5}{2}\log|x+1| - \frac{1}{10}\log|x-1| - \frac{12}{5}\log|2x+3| + C\)

Question 11
Integrate the rational function: \(\frac{5x}{(x+1)(x^2-4)}\)

Solution:

Factors: \((x+1)(x-2)(x+2)\). Let \(\frac{5x}{(x+1)(x-2)(x+2)} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{x+2}\)

\(x=-1 \Rightarrow -5 = A(-3)(1) \Rightarrow A = \frac{5}{3}\)

\(x=2 \Rightarrow 10 = B(3)(4) \Rightarrow B = \frac{5}{6}\)

\(x=-2 \Rightarrow -10 = C(-1)(-4) \Rightarrow C = -\frac{5}{2}\)

Integral = \(\frac{5}{3}\log|x+1| + \frac{5}{6}\log|x-2| - \frac{5}{2}\log|x+2| + C\)

Question 12
Integrate the rational function: \(\frac{x^3+x+1}{x^2-1}\)

Solution:

Divide numerator by denominator: \(x^3+x+1 = x(x^2-1) + 2x+1\).

Integrand = \(x + \frac{2x+1}{x^2-1} = x + \frac{2x+1}{(x-1)(x+1)}\)

Let \(\frac{2x+1}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}\)

\(x=1 \Rightarrow 3 = 2A \Rightarrow A = \frac{3}{2}\)

\(x=-1 \Rightarrow -1 = -2B \Rightarrow B = \frac{1}{2}\)

Integral = \(\frac{x^2}{2} + \frac{3}{2}\log|x-1| + \frac{1}{2}\log|x+1| + C\)

Question 13
Integrate the rational function: \(\frac{2}{(1-x)(1+x^2)}\)

Solution:

Let \(\frac{2}{(1-x)(1+x^2)} = \frac{A}{1-x} + \frac{Bx+C}{1+x^2}\)

\(2 = A(1+x^2) + (Bx+C)(1-x)\)

\(x=1 \Rightarrow 2 = 2A \Rightarrow A=1\)

Coeff \(x^2\): \(A-B=0 \Rightarrow B=1\)

Constant: \(A+C=2 \Rightarrow C=1\)

Integral = \(\int \frac{1}{1-x} dx + \int \frac{x}{1+x^2} dx + \int \frac{1}{1+x^2} dx\)

\(= -\log|1-x| + \frac{1}{2}\log(1+x^2) + \tan^{-1}x + C\)

Question 14
Integrate the rational function: \(\frac{3x-1}{(x+2)^2}\)

Solution:

Let \(\frac{3x-1}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}\)

\(3x-1 = A(x+2) + B\)

\(A=3\), \(2A+B=-1 \Rightarrow 6+B=-1 \Rightarrow B=-7\)

Integral = \(3\log|x+2| + \frac{-7}{(x+2)} \cdot (-1) \text{ (Oops, integral of } u^{-2} \text{ is } -u^{-1})\)

\(= 3\log|x+2| + \frac{7}{x+2} + C\)

Question 15
Integrate the rational function: \(\frac{1}{x^4-1}\)

Solution:

\(\frac{1}{x^4-1} = \frac{1}{(x^2-1)(x^2+1)} = \frac{1}{2} \left[ \frac{1}{x^2-1} - \frac{1}{x^2+1} \right]\)

\(= \frac{1}{2(x-1)(x+1)} - \frac{1}{2(x^2+1)}\)

\(= \frac{1}{2} \cdot \frac{1}{2} \left( \frac{1}{x-1} - \frac{1}{x+1} \right) - \frac{1}{2(x^2+1)}\)

\(= \frac{1}{4(x-1)} - \frac{1}{4(x+1)} - \frac{1}{2(x^2+1)}\)

Integral = \(\frac{1}{4}\log|x-1| - \frac{1}{4}\log|x+1| - \frac{1}{2}\tan^{-1}x + C\)

\(= \frac{1}{4}\log \left| \frac{x-1}{x+1} \right| - \frac{1}{2}\tan^{-1}x + C\)

Question 16
Integrate \(\frac{1}{x(x^n + 1)}\)

Solution:

Multiply numerator and denominator by \(x^{n-1}\): \(\int \frac{x^{n-1}}{x^n(x^n+1)} dx\).

Put \(x^n = t \Rightarrow nx^{n-1}dx = dt\).

Integral = \(\frac{1}{n} \int \frac{dt}{t(t+1)} = \frac{1}{n} \int \left( \frac{1}{t} - \frac{1}{t+1} \right) dt\)

\(= \frac{1}{n} \left( \log|t| - \log|t+1| \right) + C\)

\(= \frac{1}{n} \log \left| \frac{x^n}{x^n+1} \right| + C\)

Question 17
Integrate \(\frac{\cos x}{(1-\sin x)(2-\sin x)}\)

Solution:

Put \(\sin x = t \Rightarrow \cos x dx = dt\).

Integrand becomes \(\frac{1}{(1-t)(2-t)}\).

Partial fractions: \(\frac{1}{(1-t)(2-t)} = \frac{1}{1-t} - \frac{1}{2-t}\) (Check: \(\frac{(2-t)-(1-t)}{(1-t)(2-t)} = \frac{1}{\dots}\))

Integral = \(\int \frac{dt}{1-t} - \int \frac{dt}{2-t}\)

\(= -\log|1-t| - (-\log|2-t|) + C\)

\(= \log|2-t| - \log|1-t| + C = \log \left| \frac{2-\sin x}{1-\sin x} \right| + C\)

Question 18
Integrate \(\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\)

Solution:

Let \(x^2 = y\) for partial fractions. \(\frac{(y+1)(y+2)}{(y+3)(y+4)} = \frac{y^2+3y+2}{y^2+7y+12} = 1 - \frac{4y+10}{(y+3)(y+4)}\).

\(\frac{4y+10}{(y+3)(y+4)} = \frac{A}{y+3} + \frac{B}{y+4}\)

\(y=-3 \Rightarrow -2 = A\). \(y=-4 \Rightarrow -6 = -B \Rightarrow B=6\).

Integrand = \(1 - \left( \frac{-2}{x^2+3} + \frac{6}{x^2+4} \right) = 1 + \frac{2}{x^2+3} - \frac{6}{x^2+4}\)

Integral = \(x + \frac{2}{\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}} - 3\tan^{-1}\frac{x}{2} + C\)

Question 19
Integrate \(\frac{2x}{(x^2+1)(x^2+3)}\)

Solution:

Put \(x^2 = t \Rightarrow 2x dx = dt\).

Integrand = \(\frac{1}{(t+1)(t+3)} = \frac{1}{2} \left( \frac{1}{t+1} - \frac{1}{t+3} \right)\).

Integral = \(\frac{1}{2} \left( \log|t+1| - \log|t+3| \right) + C\)

\(= \frac{1}{2} \log \left( \frac{x^2+1}{x^2+3} \right) + C\)

Question 20
Integrate \(\frac{1}{x(x^4-1)}\)

Solution:

Use result from Q16 with \(n=4\), but note sign change if using \(t=x^4\).

\(\int \frac{x^3 dx}{x^4(x^4-1)}\). Let \(x^4=t\). \(\frac{1}{4}\int \frac{dt}{t(t-1)}\).

\(\frac{1}{4} \int \left( \frac{1}{t-1} - \frac{1}{t} \right) dt = \frac{1}{4} \log \left| \frac{t-1}{t} \right| + C\)

\(= \frac{1}{4} \log \left| \frac{x^4-1}{x^4} \right| + C\)

Question 21
Integrate \(\frac{1}{e^x - 1}\)

Solution:

Put \(e^x = t \Rightarrow e^x dx = dt \Rightarrow dx = \frac{dt}{t}\).

Integral = \(\int \frac{dt}{t(t-1)}\). Same as Q20 partial fractions.

\(= \int \left( \frac{1}{t-1} - \frac{1}{t} \right) dt = \log|t-1| - \log|t| + C\)

\(= \log \left| \frac{e^x-1}{e^x} \right| + C = \log|1 - e^{-x}| + C\)

Question 22
\(\int \frac{x dx}{(x-1)(x-2)}\) equals
A. \(\log| (x-1)^2/(x-2)|+C\) B. \(\log| (x-2)^2/(x-1)|+C\) C. \(\log| (x-1)/(x-2)^2|+C\) D. \(\log|(x-1)(x-2)|+C\)

Solution:

\(\frac{x}{(x-1)(x-2)} = \frac{-1}{x-1} + \frac{2}{x-2}\).

Integral = \(-\log|x-1| + 2\log|x-2| + C = \log \left| \frac{(x-2)^2}{x-1} \right| + C\).

Correct Answer: B

Question 23
\(\int \frac{dx}{x(x^2+1)}\) equals
A. \(\log|x| - \frac{1}{2} \log (x^2 + 1) + C\) B. \(\log|x| + \frac{1}{2} \log (x^2 + 1) + C\) C. \(-\log|x| + \frac{1}{2} \log (x^2 + 1) + C\) D. \(\frac{1}{2} \log|x| + \log (x^2 + 1) + C\)

Solution:

\(\frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}\).

Integral = \(\log|x| - \frac{1}{2}\log(x^2+1) + C\).

Correct Answer: A