Heights and Distances: Trigonometric Ratios and Identities Explained

Mastering Heights and Distances: Trigonometric Ratios and Identities Explained

Heights and Distances

A. Trigonometric Ratios

In right angled \(\Delta ABC\), where \(\angle ABC = \theta\)

  • \( \sin\theta = \frac{P}{H} = \frac{AC}{BC} \)
  • \( \cos\theta = \frac{B}{H} = \frac{AB}{BC} \)
  • \( \tan\theta = \frac{P}{B} = \frac{AC}{AB} \)
  • \( \cot\theta = \frac{1}{\tan\theta} = \frac{AB}{AC} \)
  • \( \sec\theta = \frac{1}{\cos\theta} = \frac{BC}{AB} \)
  • \( \text{cosec}\,\theta = \frac{1}{\sin\theta} = \frac{BC}{AC} \)
A right-angled triangle ABC, with angle theta at B. The sides are labeled Base (AB), Perpendicular (AC), and Hypotenuse (BC).

B. Trigonometric Identities

  • (i) \( \sin^2\theta + \cos^2\theta = 1 \)
  • (ii) \( \sec^2\theta - \tan^2\theta = 1 \)
  • (iii) \( \text{cosec}^2\theta - \cot^2\theta = 1 \)