Trigonometry Formulas
A comprehensive and accessible guide to the most important formulas in trigonometry.
Function Relationships
$\sin\theta = \frac{1}{\csc\theta}$
$\csc\theta = \frac{1}{\sin\theta}$
$\cos\theta = \frac{1}{\sec\theta}$
$\sec\theta = \frac{1}{\cos\theta}$
$\tan\theta = \frac{1}{\cot\theta} = \frac{\sin\theta}{\cos\theta}$
$\cot\theta = \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta}$
Pythagorean Identities
$\sin^2\theta + \cos^2\theta = 1$
$\tan^2\theta + 1 = \sec^2\theta$
$\cot^2\theta + 1 = \csc^2\theta$
Double Angle Formulas
$\sin 2\theta = 2\sin\theta\cos\theta$
$= 1 - 2\sin^2\theta$
$= 2\cos^2\theta - 1$
$\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$
Triple Angle Formulas
$\sin 3\theta = 3\sin\theta - 4\sin^3\theta$
$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$
$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$
Opposite Angle Formulas
$\sin(-\theta) = -\sin(\theta)$
$\cos(-\theta) = \cos(\theta)$
$\tan(-\theta) = -\tan(\theta)$
$\cot(-\theta) = -\cot(\theta)$
$\sec(-\theta) = \sec(\theta)$
$\csc(-\theta) = -\csc(\theta)$
Cofunction Formulas (in Quadrant I)
$\sin\theta = \cos(\frac{\pi}{2} - \theta)$
$\cos\theta = \sin(\frac{\pi}{2} - \theta)$
$\tan\theta = \cot(\frac{\pi}{2} - \theta)$
$\cot\theta = \tan(\frac{\pi}{2} - \theta)$
$\sec\theta = \csc(\frac{\pi}{2} - \theta)$
$\csc\theta = \sec(\frac{\pi}{2} - \theta)$
Angle Addition Formulas
$\sin(A+B) = \sin A \cos B + \cos A \sin B$
$\sin(A-B) = \sin A \cos B - \cos A \sin B$
$\cos(A+B) = \cos A \cos B - \sin A \sin B$
$\cos(A-B) = \cos A \cos B + \sin A \sin B$
$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
Half Angle Formulas
$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$
$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$
$= \frac{1-\cos\theta}{\sin\theta}$
$= \frac{\sin\theta}{1+\cos\theta}$
Power Reducing Formulas
$\sin^2\theta = \frac{1-\cos 2\theta}{2}$
$\cos^2\theta = \frac{1+\cos 2\theta}{2}$
$\tan^2\theta = \frac{1-\cos 2\theta}{1+\cos 2\theta}$
Product-to-Sum Formulas
$\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]$
$\cos A \cos B = \frac{1}{2}[\cos(A-B) + \cos(A+B)]$
$\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$
$\cos A \sin B = \frac{1}{2}[\sin(A+B) - \sin(A-B)]$
Sum-to-Product Formulas
$\sin A + \sin B = 2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})$
$\sin A - \sin B = 2\sin(\frac{A-B}{2})\cos(\frac{A+B}{2})$
$\cos A + \cos B = 2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$
$\cos A - \cos B = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})$
Arc Length
$S = r\theta$
Law of Sines
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Law of Tangents
$\frac{a-b}{a+b} = \frac{\tan[\frac{1}{2}(A-B)]}{\tan[\frac{1}{2}(A+B)]}$
Law of Cosines
$a^2 = b^2 + c^2 - 2bc \cos A$
$b^2 = a^2 + c^2 - 2ac \cos B$
$c^2 = a^2 + b^2 - 2ab \cos C$