Solve the following system of linear equations in three variables x + 20 = 3y2+10 = 2z + 5 = 110 – (y + z) - Mathematics

Linear Equation Solver
QUESTION

Solve the following system of linear equations in three variables

$$ x + 20 = \frac{3y}{2} + 10 = 2z + 5 = 110 - (y+z) $$
SOLUTION

$$ x + 20 = \frac{3y}{2} + 10 $$

Multiply by 2

$$ 2x + 40 = 3y + 20 $$

$$ 2x - 3y = 20 - 40 $$

$$ 2x - 3y = -20 \quad ...(1) $$

$$ \frac{3y}{2} + 10 = 2z + 5 $$

Multiply by 2

$$ 3y + 20 = 4z + 10 $$

$$ 3y - 4z = 10 - 20 $$

$$ 3y - 4z = -10 \quad ...(2) $$

$$ 2z + 5 = 110 - (y+z) $$

$$ 2z + 5 = 110 - y - z $$

$$ y + 2z + z = 110 - 5 $$

$$ y + 3z = 105 \quad ...(3) $$

$$ (3) \times (3) \Rightarrow $$

$$ 3y + 9z = 315 \quad ...(3) $$

$$ (2) \times (1) \Rightarrow $$

$$ 3y - 4z = -10 \quad ...(2) $$

$$ (-) \quad (+) \quad \quad (+) $$

$$ (3) - (2) \Rightarrow $$

$$ 13z = 325 $$ $$ z = \frac{325}{13} = 25 $$

Substitute the value of z = 25 in (2)

$$ 3y - 4(25) = -10 $$

$$ 3y - 100 = -10 $$

$$ 3y = -10 + 100 $$

$$ 3y = 90 $$

$$ y = \frac{90}{3} = 30 $$

Substitute the value of y = 30 in (1)

$$ 2x - 3(30) = -20 $$

$$ 2x - 90 = -20 $$

$$ 2x = -20 + 90 $$

$$ 2x = 70 $$

$$ x = \frac{70}{2} = 35 $$

$$ \therefore \text{The value of } x=35, y=30 \text{ and } z=25 $$