Algebra: Core Concepts and Formulas
Algebra is one of the most basic parts of mathematics. Algebra deals with variables and numbers.
Although Algebra is basic mathematics, it deals with a large number of formulas which relate two or more variables and numbers with each other.
To help you, here is a list of Algebraic formulas.
Basic Algebraic Formulas
The algebraic formulas involving basic relations between two and three variables are:
-
1.
\[a^2-b^2 = (a+b)(a-b)\]
-
2.
\[a^2+b^2 = (a+b)^2-2ab = (a-b)^2+2ab\]
-
3.
\[(a+b)^2 = a^2+2ab+b^2 = (a-b)^2+4ab\]
-
4.
\[(a-b)^2 = a^2-2ab+b^2 = (a+b)^2-4ab\]
-
5.
\[a^3+b^3 = (a+b)(a^2-ab+b^2) = (a+b)^3-3ab(a+b)\]
-
6.
\[a^3-b^3 = (a-b)(a^2+ab+b^2) = (a-b)^3+3ab(a-b)\]
-
7.
\[(a+b)^3 = a^3+3a^2b+3ab^2+b^3 = a^3+b^3+3ab(a+b)\]
-
8.
\[(a-b)^3 = a^3-3a^2b+3ab^2-b^3 = a^3-b^3-3ab(a-b)\]
-
9.
\[(x+a)(x+b) = x^2+x(a+b)+ab\]
-
10.
\[(x-a)(x+b) = x^2+x(b-a)-ab\]
-
11.
\[(x-a)(x-b) = x^2-x(a+b)+ab\]
-
12.
\[(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac\]
-
13.
\[(a+b+c)^3 = a^3+b^3+c^3+3(a+b)(b+c)(c+a)\]
-
14.
\[a^4-b^4 = (a-b)(a+b)(a^2+b^2)\]
-
15.
\[a^6-b^6 = (a+b)(a^2-ab+b^2)(a-b)(a^2+ab+b^2)\]
-
16.
\[a^6+b^6 = (a^2+b^2)(a^4-a^2b^2+b^4)\]
-
17.
\[a^4+a^2b^2+b^4 = (a^2-ab+b^2)(a^2+ab+b^2)\]
-
18.
\[(a-b-c)^2 = a^2+b^2+c^2-2ab+2bc-2ac\]
-
19.
\[a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ac)\]
Indices Formulas
The formulas involving relations between variables and their powers or powers and indices are:
-
1.
\[x^m \times x^n = x^{m+n}\] \[x^m \times x^n \times \ldots \times x^p = x^{m+n+ \ldots +p}\]
-
2.
\[x^m \div x^n = x^{m-n}\] \[x^m \div x^n \div \ldots \div x^p = x^{m-n- \ldots -p}\]
-
3.
\[(x^m)^n = x^{m \times n}\] \[((x^m)^n)^o = x^{m \times n \times o}\]
-
4.
\[x^0 = 1 \quad (\text{for } x \neq 0)\]
-
5.
\[x^{-m} = \dfrac{1}{x^m}\] \[x^{m} = \dfrac{1}{x^{-m}}\]
-
6.
\[x^{\frac{m}{n}} = \sqrt[n]{x^m}\]
-
7.
\[\left( \dfrac{x^a}{y^b} \right)^c = \dfrac{x^{ac}}{y^{bc}}\]
-
8.
\[\dfrac{x^m}{y^m} = \left( \dfrac{x}{y} \right)^m\]
-
9.
\[\sqrt[m]{\dfrac{x^a}{y^b}} = \dfrac{x^{\frac{a}{m}}}{y^{\frac{b}{m}}}\]
-
10.
\[x^{\frac{p}{q}} = \sqrt[q]{x^p} = \left(\sqrt[q]{x}\right)^p\]
-
11.
\[\sqrt[m]{\dfrac{x}{y}} = \dfrac{\sqrt[m]{x}}{\sqrt[m]{y}}\]
-
12.
\[\sqrt{a} \times \sqrt {b} = \sqrt{a \times b}\]Provided that a, b are not negative numbers.
-
13.
\[\text{If } a^x = a^y, \text{ then } x=y\]Provided that: \(0 < a \text{ and } a \neq 1\)
-
14.
\[\text{If } a^x = b^x, \text{ then } a=b\]Provided that: \(0 < a, b \text{ and } x \neq 0\) (Original said a,b !=1, but x!=0 is more critical here if a,b can be anything positive)Alternative simpler condition: \(x \neq 0 \text{ and } a, b > 0\).
If strictly following original LaTeX: \(0 < a, b \text{ and } a \neq 1, b \neq 1 \text{ (and implying } x \neq 0)\)