Using the algebra of statement, prove that
(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∧ ~ q) ∨ (~ p ∧ q)
SOLUTION
(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∧ ~ q) ∨ (~ p ∧ q)
L.H.S.
= (p ∨ q) ∧ (~ p ∨ ~ q)
≡ [(p ∨ q) ∧ ~ p] ∨ [(p ∨ q) ∧ ~ q] .....[Distributive law]
≡ [(p ∧ ~ p) ∨ (q ∧ ~ p)] ∨ [(p ∧ ~ q) ∨ (q ∧ ~ q)] .....[Distributive law]
≡ [F ∨ (q ∧ ~p)] ∨ [(p ∧ ~ q) ∨ F] .....[Complement law]
≡ (q ∧ ~p) ∨ (p ∧ ~ q) .....[Identity law]
≡ (p ∧ ~ q) ∨ (~ p ∧ q) ....[Commutative law]
= R.H.S.