Advertisement

Practice Set 2.4 Real Numbers Class 9th Mathematics Part I MHB Solution

Real Numbers

Class 9th Mathematics Part I MHB Solution
Practice Set 2.4

Question 1.

Multiply

i. √3(√7 – √3)

ii. (√5 – √7)√2

iii. (3√2 – √3)(4√3 – √2)


Answer:

i. √3(√7 – √3)


=√3 × √7 – √3 × √3


[∵√a(√b–√c)=√a×√b–√a×√c]


=√21 – 3


ii. (√5 – √7)√2


=√5 × √2 – √7 × √2


[∵√a(√b–√c)=√a×√b–√a×√c]


=√10 – √14


iii. (3√2 – √3)(4√3 – √2)


=3√2(4√3 – √2) – √3(4√3 – √2)


=3√2×4√3 – 3√2×√2 – √3×4√3 + √3×√2


[∵√a(√b–√c)=√a×√b–√a×√c]


=12√6 – 3×2 – 4×3 + √6


=12√6 – 6 – 12 + √6


=13√6 – 18


Question 2.

Rationalize the denominator.

i.  ii. 

iii.  iv. 


Answer:

i. The rationalizing factor of √7 + √2 is √7 – √2. Therefore, multiply both numerator and denominator by √7 – √2.





[∵ (a-b)(a+b) = a2 – b2]




ii. The rationalizing factor of 2√5 – 3√2 is 2√5 + 3√2. Therefore, multiply both numerator and denominator by 2√5 + 3√2.





[∵ (a-b)(a+b) = a2 – b2]




iii. The rationalizing factor of 7 + 4√3 is 7 – 4√3. Therefore, multiply both numerator and denominator by 7 – 4√3.





[∵ (a-b)(a+b) = a2 – b2]




iv. The rationalizing factor of √5 + √3 is √5 - √3. Therefore, multiply both numerator and denominator by √5 - √3.





[∵ (a-b)(a+b) = a2 – b2]



[∵ (a-b)2 = a2 + b2 – 2ab]