Future
Value of A Series Of Payments
: 
Calculate the Future
value at the end of 5 years of the following series of payment at 10% rate of interest.
R_{1} = Rs.1000 at the end of 1^{st} year
R_{2} = Rs.2000 at the end of 2^{nd} year.
R_{3} = Rs.3000 at the end of 3^{rd} year.
R_{4} = Rs.2000 at the end of 4^{st} year.
R_{5}
= Rs. 1500 at the end of 5^{th} year
V_{n
} = R_{1}(1+i)^{n1}
+ R_{2}(1+i)^{n2} + R_{3} (1+i)^{n3} + R_{4}
(1+i)^{n4} + R_{n}
=
1000(1+.10)^{51} + 2000(1+.10)^{52} + 3000(1+.10)^{53}
+ 2000(1+.10)^{54} + 1500
=
1000(1.10)^{4} + 2000(1.10)^{3} + 3000(1.10)^{2}
+ 2000(1.10)^{1} + 1500
=
1000(1.464)+2000(1.3310)+3000(1.21)
+2000(1.10) +1500
= 1464 + 2662 +3630 +2200+1500
V_{n}
= 11456
Another Method : 
Using
Compounding Factor Table
End of year

Amt of payment

No. of yrs compounded

Compounded Interest factor

Future value

1

1000

4

1.464

1464

2

2000

3

1.331

2662

3

3000

2

1.210

3630

4

2000

1

1.100

2200

5

1500

0

1

1500





11456

Future
value of the end of 5 years = 11456